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1. Introduction

The increasing incidence of myopia across the globe [1], and in East
Asia in particular [2–5], has caused great interest in the optometric
community, not least because of the emergence of treatment options
such as soft dual-focus design contact lenses [6,7], orthokeratology
contact lenses [8–11] and pharmaceutical agents [12].

Whilst myopia can certainly be a general inconvenience, requiring
the use of refractive correction usually in the form of spectacles and
contact lenses, the main focus of recent concern is the pathological
consequence of an eye which is fundamentally too long for its refractive
capability, with higher levels of retinopathy [13], retinal detachment
[14], glaucoma [15] and cataract [16] seen in myopic eyes.

In optometric circles, the degree of myopia is typically described in
refractive error terminology. This is entirely logical when the primary
consideration is vision correction and refraction. Myopes are described
in terms of the lens power required to correct refractive error and in-
deed, refractive error is described as being associated with myopic
pathology [17]; however, when the key clincal consideration is the
pathological consequences of increased eye size (rather than referactive
concerns), it seems more appropriate to describe ocular dimensions
than refractive error.

Various dimensional terms are potentially available (e.g. global
volume) for such a description but the most commonly used, primarily
due to its relatively straightforward measurement, is axial length.
Related to this, Cheng, Brennan and co-workers have recently argued
that the impact of any form of myopia management is best described as
its effect on eye growth rather than the slowing of refractive error
change [18].

Of course, there is a close relationship between refractive error and
axial length but an inspection of myopia-related pathology suggests
axial length is the more important factor. In an assessment of over 9000
patients, Tideman et al. included both axial length and refractive error
in a statistical model exploring the likelihood of visual impairment [19]
and reported that axial length demonstrated a significant relationship
with visual impairment but refractive error did not.

Traditionally, ocular axial length was assessed using A-scan ultra-
sound methods but over the past 20 years, more sophisticated, non-
contact, rapid instrumentation has become available. Such devices in-
clude the IOLMaster (v3, v5 and 500) (Carl Zeiss) which employ partial
coherence interferometry, the newer IOLMaster 700 (Carl Zeiss) with its
swept source optical coherence tomography, the Lenstar LS 900 (Haag-
Streit) which employs low coherence reflectometry [20] and the
Aladdin (Topcon) [20] which utilises a similar approach [21]. Such
devices were initially developed to assist with the selection of intra-
ocular lens power for patients presenting for cataract surgery. They are
relatively expensive, typically costing around £20,000 to £40,000. Such
a cost is justifiable in a surgical setting or in a research centre working
on myopia treatment, but for optometrists and opticians interested in
myopia control (especially in the early stages of this new form of re-
fractive management), such costs are likely to be prohibitive especially
because these devices have very limited use for other types of patients.
Anecdotal reports suggest that there are fewer than 20 infrared bi-
ometers in optometric practices in the United Kingdom.

An alternative approach is to explore the potential of estimating
axial length from refractive error alone or from a combination of re-
fractive error and corneal curvature. To a first order of approximation,
it seems reasonable to suppose that these three optometric measures
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should be associated and as refractive error estimation and corneal
shape measurements are fundamental competencies of all optometrists,
such analysis harbours the potential for a simple and inexpensive route
to axial length measurement as an aid for eyecare practitioners wishing
to consider myopia management in children.

2. Methods

2.1. Generation of relationship

Data from a multi-centre study of novel dual focus soft, daily dis-
posable contact lenses were used to generate the best fit relationship
between axial length versus refractive error and corneal curvature. This
study has recently been reported in detail [7] but in brief, 144 subjects
aged 8–12 years were examined annually for 36 months, having been
fitted after a baseline assessment with a dual focus contact lens (Mis-
ight® 1 day, CooperVision, Inc) or a conventional design, spherical lens
(Proclear® 1 day, CooperVision, Inc). Topography and axial length
measures were evaluated at each visit with an IOL Master 500 (Carl
Zeiss, Oberkochen, Germany) and cycloplegic and non-cycloplegic re-
fractive errors were determined with a WR-5100 K or WAM-5500 au-
torefractor device (Grand Seiko Co., Hiroshima, Japan).

Using data for all visits over the three years of the study, a linear
mixed model was constructed to evaluate the potential for calculating
the reciprocal of axial length from the reciprocal of mean anterior
corneal radius of curvature and spherical equivalent refractive error at
the corneal plane. Also included in the model were ‘eye’, nested within
‘subject’, which was treated as a random effect. The performance of
using the regression model to calculate axial length in comparison to
the measured biometer values (i.e. calculated axial length vs. measured
axial length) was assessed by constructing Bland-Altman charts and by
determining the 95 % limits of agreement [22].

2.2. Assessment with a separate dataset

To evaluate the efficacy of the determined relationship, a compar-
ison between measured and calculated axial length values was per-
formed on a separate dataset. Here, values were used from the Northern
Ireland Childhood Errors of Refraction (NICER) study of Saunders et al.
[23–25]. Data were available for 1046 young people (age six to 22
years, 99 % of whom were white) on whom auto-refraction (SRW-5000
or NVision-K 5001, Shin-Nippon, Tokyo, Japan), anterior cornea radius
of curvature and axial length determination (IOL Master v3 Carl Zeiss,
Oberkochen, Germany) were assessed. Again, a Bland-Altman assess-
ment was conducted to calculate the 95 % limits of agreement.

3. Results

Using cycloplegic refraction data from the Chamberlain et al. study
[7], the model found the following predictive relationship:

= + +

A k
S1 0.22273 0.00070 0.01368

Where A= axial length (mm), k=mean anterior corneal radius of
curvature (mm) and S= spherical equivalent refractive error at the
corneal plane (D). Here, both

k
1 (F= 1636, p < 0.0001) and S

(F= 1334, p < 0.0001) were significant factors, with r2= 0.83. Re-
organisation of this equation to calculate axial length gives:

=

+ +

A
S

1
0.00070 0.01368k

0.2273

Fig. 1 shows the Bland Altman chart for the relationship between
measured and calculated axial length. The 95 % limits of agreement for
the two measures are± 0.73mm (±3.0 % of the mean axial length
measurement).

When this exercise was repeated for non-cycloplegic measures, the

95 % confidence limits were±0.75mm (±3.0 %). These limits of
agreement were larger if only the refractive error was included in the
model and corneal radius of curvature was ignored (± 1.26mm
[±5.1 %] and r2= 0.57 for both cycloplegic and non-cycloplegic
measures).

When this formula was employed for the NICER database, there was
a small offset error between the two methods, with values 0.13mm
longer on average with the calculated values than those measured
(Fig. 2). The 95 % limits of agreement were −0.73 to +0.99mm (an
average of± 3.7 %).

4. Discussion

Using refraction and keratometry data from the analysed dataset
was able to provide reasonable predictive capability for determining
absolute axial length. Incorporation of keratometry measures into the
calculation offers much better agreement than refraction alone.
Interestingly, similar findings were observed whether the refraction
data were collected via a cycloplegic or non-cycloplegic refraction.

The limits of agreement of around± 0.73mm or±3 % are small in
absolute terms and allows for a good estimate of axial length. For ex-
ample, Tideman et al. outlined the risk of visual impairment for five
sub-groups of axial length: less than 24mm, 24−26mm, 26−28mm,
28−30mm and greater than 30mm [19]. The derived formula can
readily assign patients to these ‘risk groups’ and assist practitioners in
deciding whether some form of myopia management is warranted.

The predictive formula performed similarly with the data from the
NICER study, with a modest offset error and 95 % confidence limits
of± 3.7 %. This result is perhaps surprisingly good given the different
instrumentation and protocols employed across the two studies. It
would certainly be possible to modify this relationship for different
clinical scenarios (e.g. different age ranges) and equipment - and cer-
tainly further work is required to understand this better - but this first
overview suggests that the formula may be resilient to diverse clinical
situations.

It is important to note that whilst the predictive capability of this
formula seems reasonable for absolute measures of axial length, it is
unlikely to be helpful in tracking changes in axial length over time or
with different treatment modalities. A 3 % change in axial length (the
95 % confidence limits of the formula) is towards the upper end of the
magnitude of change seen in the dual focus lens study of Chamberlain
et al. [7] over a three year period. As such, the predictions provided by
the formula are too ‘noisy’ to be employed for precise tracking of
myopic changes over time. In contrast, commercial biometers offer
inter-observer or intra-observer repeatability (95 % confidence limits)
of± 0.06mm (∼0.25 %) or better [26,27], indicative of a precise
capability for tracking axial length change.

5. Conclusion

This work indicates that considering corneal curvature readings
alongside refractive error measurement offers a good estimate of ab-
solute axial length, and this estimate becomes less accurate if refractive
error alone is used as a sole proxy for axial length. The formula de-
veloped provides extra clinical information to optometrists and opti-
cians in the community (particularly those without access to dedicated
biometry instrumentation) considering myopia management options for
their patients and can be used in conjunction with published axial
length risk parameters. However, practitioners wishing to precisely
monitor change in axial length should utilise a commercial biometric
device.
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Fig. 1. Bland-Altman chart showing the relationship between
the difference in axial length (measured - calculated) versus
mean axial length for the dataset of Chamberlain et al. [7] The
red line indicates the mean difference between the two
methods and the dotted lines show the 95 % limits of agree-
ment as described by Bland and Altman [22].

Fig. 2. Bland-Altman chart showing the relationship between
the difference in axial length (measured - calculated) versus
mean axial length for the NICER dataset [23] The red line in-
dicates the mean difference between the two methods and the
dotted lines show the 95 % limits of agreement as described by
Bland and Altman [22].
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